P(x)=3X^2+X-8

Simple and best practice solution for P(x)=3X^2+X-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=3X^2+X-8 equation:



(P)=3P^2+P-8
We move all terms to the left:
(P)-(3P^2+P-8)=0
We get rid of parentheses
-3P^2+P-P+8=0
We add all the numbers together, and all the variables
-3P^2+8=0
a = -3; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-3)·8
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-3}=\frac{0-4\sqrt{6}}{-6} =-\frac{4\sqrt{6}}{-6} =-\frac{2\sqrt{6}}{-3} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-3}=\frac{0+4\sqrt{6}}{-6} =\frac{4\sqrt{6}}{-6} =\frac{2\sqrt{6}}{-3} $

See similar equations:

| 2(8b-4)+2(4b+2)=112 | | 7x+5+9=180 | | w+73=75 | | 10=-2(a-34 | | r+.80=92 | | 1/5(p-25)=51 | | 1/4(d+4)=5 | | 6.75(m+55)=5096.25 | | 3d+24=96-6d | | x^2+5x-18=-4 | | 3(x-4)=10-2x+6+4+2x+7 | | 2x+10+23=90 | | (10x10=100 | | 6x+20+55+88=180 | | 5m+8=3m+10 | | -6.4+8v=6.4 | | x/5+9.2=-3.3 | | 1/6x+5=7/9 | | 2b=13.2 | | b+-15.9=1.3 | | d-191=722 | | t-670=16 | | x/4=7-x/3 | | -62x-31=31.00 | | -9x+20=-133.00 | | 16x+122=-102.00 | | -5.5x+155=-43.00 | | 0.5x+7=-29 | | 150x-25=2 | | 0.8x-7=-29 | | -0.5x-4=14 | | 0.4x+7=39 |

Equations solver categories